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ABSTRACT
In this paper,we prove a fixed point theorem using compatible condition . Our result generalizes the result of Kang
and Rhoades satisfying contractive condition of integral type.
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I. INTRODUCTION

Rhoades(1985)proved for pair of mappings which in turn was generalized by Kang and Rhoades (1996)using
compatible condition defined by Jungck(1986).Branciari[1] obtained a fixed point result for a single mapping
satisfying an analogue of Banach’s contraction principle for an intregral-type inequality.The second auther [6] prove
Two fixed point theorems involving more general contractive conditions.

II. PRELIMINARIES
Consider  ={  :  :  +  } such that  is nonnegative,Lebesgue integrable,and satisfies





0

)( dtt
>0 for each  >0 (2.1)

Let  : +  + satisfy that
(i) is nonnegative and nondecreasing on  + ,

(ii) (t)<t for each t>0,

(iii) 
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n(t)< for each fixed t>0. where  ={ : satisfies (i)-(iii)}.

III. MATERIAL AND METHODS
Theorem (3.1): Let A,B,S and T be the mappings from a complete metric space (X,d) into itself satisfying the
following conditions:
S and T are surjective
(ii) One of A,B,S and T is continuous
(iii) A,S and B,T are compatible pairs of type(P)

(iv) 
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Wherek   ,),1,0[ ,and
M(x,y,z)=max{M(Sx,Ty,z),M(Sx,Ax,z),M(Ty,By,z),
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(3.2)
when M(x,y,z)=1 if Sx=By and Ty=Ax.Then A,B,S and T have a unique common fixed point in X.

IV. RESULT AND DISCUSSION
Proof of theorem:If A,B,S and T be the mappings from a complete metric space (X,d)into itself then there exists a
sequence {xn}X with x0X,
Ax2n= Tx2n+1 = x2n+1 and Bx2n+1= Sx2n+2 =x2n+2
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Now assume x2n+  x2n+2 for each n.With x=x2n, y= x2n+1,then from(3.1) we have
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(t)dt
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(t)dt (3.3)

Continuing this process,we have
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(t)dt ≥ …. 2n(d) (3.4)

where d= 
),,(
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(t)dt . Then it is easily shown that {xn} is Cauchy,hence convergent.Call the limit
p.Consequently the subsequences{Ax2n},{Bx2n+1}, {Sx2n}, {Tx2n+1} converge to p .
Let p=Sp=Ap .Then M(p,p,z)

= max {M(Sp,Tp,z),M(Sp,Ap,z),M(Tp,Bp,z),

}
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(3.5)
Therefore M(p,p,z)= max {M(p,Tp,z),1,M(Tp,Bp,z),
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(3.6)
Hence M(p,Tp,z).M(p,Bp,z)=1 since M(Tp,Bp,z) ≥M(Tp,p,z)*M(p,Bp,z)
So p=Tp ,p=Bp and (3.1) becomes
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(t)dt ≥  ( 
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which, from (3.3) ,implies that p=Tp=Bp.
Similarly , p=Tp=Bp implies that p=Sp=Ap. We will now show that A,B,S and T satisfy (3.5).
M(x,Sx,z)=max M(Sx,TSx,z),M(Sx,Ax,z),M(TSx,BSx,z),
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(3.8).
Now we have M(Sx,TSx,z) ≥M(Sx,Ax,z)*M(Ax,TSx,z)

M(Sx,BSx,z)≥ M(Sx,Ax,z)*M(Ax,BSx,z)
M(BSx,TSx,z) ≥M(BSx,Bx,z)*M(Bx,TSx,z)

on the considering above we have


z)TSx,M(Sx,

0

(t)dt ≥  ( 

),,(

0
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(t)dt a contradiction

V. CONCLUSION
Hence S,A and T,B has a fixed point ,that any fixed point of S,A is also a fixed point of T,B and conversely.Thus
S,A and T,B have a common fixed point . Hence A,B,S and T has a common fixed point .

Suppose that T is continous. Since B and T are compatible,then
TTx2n+1 =Tp and BBx2n+1=Tp .

So that M(TTx2n+1 ,BBx2n+1,z)=1=M(SSx2n,AAx2n,z) as n 
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